2016年全国统一高考数学试卷(理科)(新课标Ⅲ)

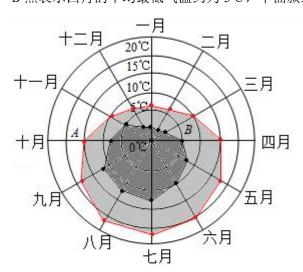
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.

1. (5分)(2016•新课标Ⅲ)设集合 $S = \{x | (x-2)(x-3) \ge 0\}$, $T = \{x | x > 0\}$, 则 $S \cap T = \{x | x > 0\}$, ()

A. [2, 3]

B. $(-\infty, 2] \cup [3, +\infty)$

C. $[3, +\infty)$

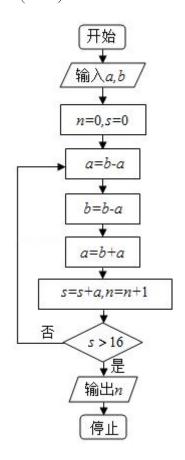

D. $(0, 2] \cup [3, +\infty)$

2. (5 分) (2016•新课标III) 若 z=1+2i, 则 $\frac{4i}{z-z-1}=$ ()

3. (5 分) (2016•新课标III) 已知向量 \overrightarrow{BA} = ($\frac{1}{2}$, $\frac{\sqrt{3}}{2}$), \overrightarrow{BC} = ($\frac{\sqrt{3}}{2}$, $\frac{1}{2}$), 则 $\angle ABC$ = ()

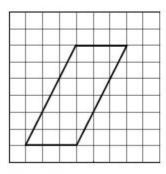
- A. 30° B. 45° C. 60° D. 120°

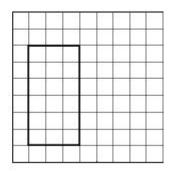
4. (5分)(2016•新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月 平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15°C, B 点表示四月的平均最低气温约为 5 \mathbb{C} ,下面叙述不正确的是(

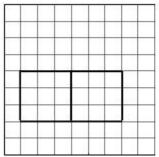

平均最低气温 ——— 平均最高气温

- A. 各月的平均最低气温都在 0℃以上
- B. 七月的平均温差比一月的平均温差大
- C. 三月和十一月的平均最高气温基本相同
- D. 平均最高气温高于 20℃的月份有 5 个

- 5. $(5 分)(2016 \bullet$ 新课标III) 若 $tan\alpha = \frac{3}{4}$,则 $cos^2\alpha + 2sin^2\alpha = ($
 - A. $\frac{64}{25}$ B. $\frac{48}{25}$ C. 1 D. $\frac{16}{25}$


- 6. (5 分) (2016•新课标III) 已知 $a = \frac{4}{2^3}$, $b = \frac{2}{3^3}$, $c = \frac{1}{25^3}$, 则 ()


- 7. (5 分)(2016 新课标III) 执行如图程序框图,如果输入的 a=4,b=6,那么输出的 n=



- B. 4
- C. 5
- 8. (5 分) (2016•新课标III) 在 $\triangle ABC$ 中, $B=\frac{\pi}{4}$,BC 边上的高等于 $\frac{1}{3}BC$,则 $\cos A$ 等于

- A. $\frac{3\sqrt{10}}{10}$ B. $\frac{\sqrt{10}}{10}$ C. $-\frac{\sqrt{10}}{10}$ D. $-\frac{3\sqrt{10}}{10}$
- 9. (5分)(2016•新课标Ⅲ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面 体的三视图,则该多面体的表面积为()

- A. $18+36\sqrt{5}$
- B. $54+18\sqrt{5}$ C. 90
- 10. (5 分)(2016 \bullet 新课标III)在封闭的直三棱柱 $ABC A_1B_1C_1$ 内有一个体积为 V 的球,若 $AB \perp BC$, AB=6, BC=8, $AA_1=3$, 则 V 的最大值是 (
 - A. 4π

- B. $\frac{9\pi}{2}$ C. 6π D. $\frac{32\pi}{3}$
- 11. (5 分)(2016•新课标III)已知 O 为坐标原点,F 是椭圆 C: $\frac{\mathbf{x}^2}{\mathbf{x}^2} + \frac{\mathbf{y}^2}{\mathbf{k}^2} = 1$ (a > b > 0)的

左焦点, A, B 分别为 C 的左, 右顶点. P 为 C 上一点, 且 $PF \perp x$ 轴, 过点 A 的直线 l与线段 PF 交于点 M, 与 y 轴交于点 E. 若直线 BM 经过 OE 的中点,则 C 的离心率为(

- A. $\frac{1}{3}$

- B. $\frac{1}{2}$ C. $\frac{2}{3}$ D. $\frac{3}{4}$
- 12. (5分)(2016•新课标III)定义"规范 01数列" $\{a_n\}$ 如下: $\{a_n\}$ 共有 2m 项,其中 m 项 为 0, m 项为 1, 且对任意 $k \leq 2m$, a_1 , a_2 , …, a_k 中 0 的个数不少于 1 的个数, 若 m=4, 则不同的"规范 01 数列"共有()
 - A. 18 个

- B. 16 个 C. 14 个 D. 12 个
- 二、填空题:本大题共4小题,每小题5分.
- 13. (5 分) (2016•新课标Ⅲ) 若 x, y 满足约束条件 $\begin{cases} x-y+1 \ge 0 \\ x-2y \le 0 \end{cases}$,则 z=x+y 的最大值 $x+2y-2 \le 0$

为 .

14. (5 分) (2016•新课标III) 函数 $y=\sin x-\sqrt{3}\cos x$ 的图象可由函数 $y=\sin x+\sqrt{3}\cos x$ 的图 第3页(共28页)

象至少向右平移 个单位长度得到.

- 15. (5 分) (2016•新课标Ⅲ) 已知f(x) 为偶函数,当x<0 时,f(x)=ln(-x)+3x,则曲线y=f(x) 在点(1,-3)处的切线方程是_____.
- 16. (5 分) (2016•新课标III) 已知直线 l: $mx+y+3m-\sqrt{3}=0$ 与圆 $x^2+y^2=12$ 交于 A, B 两点,过 A, B 分别作 l 的垂线与 x 轴交于 C, D 两点,若 $|AB|=2\sqrt{3}$,则|CD|=______.

三、解答题:解答应写出文字说明,证明过程或演算步骤.

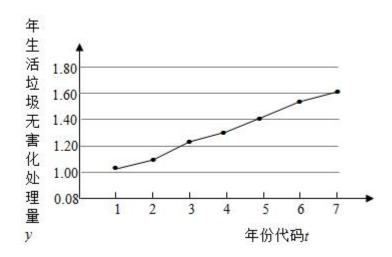
- 17. (12 分) (2016•新课标III) 已知数列 $\{a_n\}$ 的前 n 项和 $S_n=1+\lambda a_n$,其中 $\lambda \neq 0$.
 - (1) 证明 $\{a_n\}$ 是等比数列,并求其通项公式;

(2) 若
$$S_5 = \frac{31}{32}$$
, 求 λ .

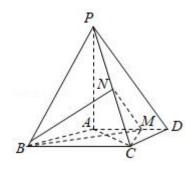
18. (12 分) (2016•新课标Ⅲ) 如图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位: 亿吨)的折线图.

注: 年份代码 1 - 7 分别对应年份 2008 - 2014.

- (I) 由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;
- (II)建立y关于t的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处理量.


附注:

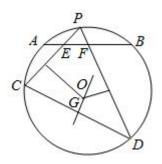
参考数据:
$$\sum_{i=1}^{7} y_i = 9.32$$
, $\sum_{i=1}^{7} t_i y_i = 40.17$, $\sqrt{\sum_{i=1}^{7} (y_i - y_i)^2} = 0.55$, $\sqrt{7} \approx 2.646$.


参考公式: 相关系数
$$r = \frac{\sum\limits_{i=1}^{n} (\mathtt{t_i} - \overline{\mathtt{t}}) (\mathtt{y_i} - \overline{\mathtt{y}})}{\sqrt{\sum\limits_{i=1}^{n} (\mathtt{t_i} - \overline{\mathtt{t}})^2 \sum\limits_{i=1}^{n} (\mathtt{y_i} - \overline{\mathtt{y}})^2}},$$

回归方程 \hat{v} = \hat{a} + \hat{b} \hat{u} 中斜率和截距的最小二乘估计公式分别为:

$$\widehat{b} = \frac{\sum_{i=1}^{n} (t_i - \overline{t}) (y_i - \overline{y})}{\sum_{i=1}^{n} (t_i - \overline{t})^2}, \widehat{a} = \overline{y} - \widehat{b} \overline{t}.$$

- 19. (12 分) (2016•新课标Ⅲ) 如图, 四棱锥 *P ABCD* 中, *PA*⊥底面 *ABCD*, *AD*//*BC*, *AB=AD=AC=*3, *PA=BC=*4, *M* 为线段 *AD* 上一点, *AM=2MD*, *N* 为 *PC* 的中点.
 - (1) 证明: MN//平面 PAB;
 - (2) 求直线 AN 与平面 PMN 所成角的正弦值.


- 20. (12 分) (2016•新课标III) 已知抛物线 $C: y^2 = 2x$ 的焦点为 F,平行于 x 轴的两条直线 l_1, l_2 分别交 C 于 A,B 两点,交 C 的准线于 P,Q 两点.
 - (I) 若F在线段AB上, R是PQ的中点, 证明AR//FQ;
 - (II) 若 $\triangle POF$ 的面积是 $\triangle ABF$ 的面积的两倍,求 AB 中点的轨迹方程.
- 21. (12 分) (2016•新课标III) 设函数 $f(x) = a\cos 2x + (a-1)(\cos x + 1)$, 其中 a > 0, 记 f(x) |的最大值为 A.
 - (I) 求f' (x);
 - (II) 求*A*;
 - (III) 证明: $|f'(x)| \leq 2A$.

请考生在第 22-24 题中任选一题做答,如果多做,则按所做的第一题计分.[选修 4-1:几何证明选讲]

22. (10 分) (2016•新课标III) 如图, $\bigcirc O$ 中 $\stackrel{\frown}{AB}$ 的中点为 P,弦 PC,PD 分别交 AB 于 E,

F两点.

- (1) 若 $\angle PFB = 2 \angle PCD$, 求 $\angle PCD$ 的大小;
- (2) 若 EC 的垂直平分线与 FD 的垂直平分线交于点 G, 证明: $OG \perp CD$.

[选修 4-4: 坐标系与参数方程]

- 23. (2016•新课标III)在直角坐标系 xOy 中,曲线 C_1 的参数方程为 $\begin{cases} x=\sqrt{3}\cos\alpha \\ y=\sin\alpha \end{cases}$ (α 为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线 C_2 的极坐标方程为 $p\sin\left(\theta+\frac{\pi}{4}\right)=2\sqrt{2}$.
 - (1) 写出 C_1 的普通方程和 C_2 的直角坐标方程;
 - (2) 设点 P 在 C_1 上,点 Q 在 C_2 上,求|PQ|的最小值及此时 P 的直角坐标.

[选修 4-5: 不等式选讲]

- 24. (2016•新课标III) 已知函数 f(x) = |2x a| + a.
 - (1) 当 a=2 时,求不等式f(x) ≤6 的解集;
 - (2) 设函数 g(x) = |2x 1|, 当 $x \in \mathbb{R}$ 时, $f(x) + g(x) \ge 3$, 求 a 的取值范围.