化学试题

可能用到的相对原子质量: H1 C12 N14 O16 Na23 Mg24 Al27 P31 S32 Cl35.5 Fe 56 Cu 64 Br 80 Ag 108 I 127 Ba 137

- 一、选择题(本大题共25小题,每小题2分,共50分。每小题列出的四个备选项中只有一个 是符合题目要求的,不选、多选、错选均不得分)
- 1. 下列物质属于纯净物的是
- A. 汽油
- B. 食醋
- C. 漂白粉
- D. 小苏打

- 2. 下列物质属于弱电解质的是
- A. CO_2

- B. H_2O
- C. HNO_3
- D. NaOH

- 3. 下列物质的化学成分不正确的是
- A. 生石灰: Ca(OH),

B. 重晶石: BaSO₄

C. 尿素: CO(NH₂),

D. 草酸: HOOC-COOH

4. 下列图示表示灼烧操作的是

- 5. 下列表示不正确的是
- A. 乙炔的实验式 C_2H_2

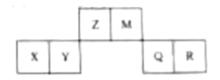
- C. 2, 3-二甲基丁烷的键线式
- 6. 下列说法正确的是
- A. C₆₀和 C₇₀ 互为同位素
- C. CO和CO2互为同素异形体
- 7. 关于有机反应类型,下列判断不正确的是

- B. 乙醛的结构简式 CH₃CHO
- D. 乙烷的球棍模型

- C2H6和 C6H14 互为同系物
- D. CH₃COOH和 CH₃OOCH 是同一种物质

- A. $CH \equiv CH + HCl \xrightarrow{\Delta}_{\text{催化剂}} CH_2 = CHCl (加成反应)$
- B. CH_3CH (Br) CH_3+KOH $\xrightarrow{\text{@}}$ $CH_2=CHCH_3$ \uparrow $+KBr+H_2O$ (消去反应)
- C. $2CH_3CH_2OH+O_2 \xrightarrow{\text{催化剂}} 2CH_3CHO+2H_2O$ (还原反应)
- 8. 关于反应 K₂H₃IO₆+9HI=2KI+4I₂+6H₂O, 下列说法正确的是
- A. K₂H₃IO₆发生氧化反应

- B. KI 是还原产物
- C. 生成 12.7g I2时, 转移 0.1mol 电子
- D. 还原剂与氧化剂的物质的量之比为 7:1


- 9. 下列说法不正确的是
- A. 硅酸钠是一种难溶于水的硅酸盐
 - &盐 B. 镁在空气中燃烧可生成氧化镁和氮化镁
- C. 钠与水反应生成氢氧化钠和氢气
- D. 常温下, 铝遇浓硝酸或浓硫酸时会发生钝化

- 10. 下列说法不正确的是
- A. 应避免铵态氮肥与草木灰混合施用
- B. 工业上可用离子交换法提高海带中碘的提取率
- C. 电解饱和食盐水可以得到金属钠和氯气
- D. 将生铁进一步炼制减少含碳量,能得到耐腐蚀的钢
- 11. 下列说法正确的是
- A. 减压过滤适用于过滤胶状氢氧化物类沉淀
- B. 实验室电器设备着火,可用二氧化碳灭火器灭火
- C. 制备硫酸亚铁铵晶体时,须将含 $FeSO_4$ 和 $(NH_4)_2SO_4$ 的溶液浓缩至干
- D. 将热的 KNO₃饱和溶液置于冰水中快速冷却即可制得颗粒较大的晶体
- 12. 下列"类比"结果不正确的是
- A. H_2O_2 的热稳定性比 H_2O 的弱,则 N_2H_4 的热稳定性比 NH_3 的弱
- B. H_2O 的分子构型为 V 形,则二甲醚的分子骨架(C-O-C)构型为 V 形
- C. Ca(HCO₃)₂的溶解度比CaCO₃的大,则NaHCO₃的溶解度比Na₂CO₃的大
- D. 将丙三醇加入新制 $Cu(OH)_2$ 中溶液呈绛蓝色,则将葡萄糖溶液加入新制 $Cu(OH)_2$ 中溶液也呈绛蓝色

- 13. 不能正确表示下列变化的离子方程式是
- A. 碳酸镁与稀盐酸反应: CO₃²⁻+2H⁺=CO₂↑+H₂O
- B. 亚硫酸氢钠的水解: $HSO_3^- + H_2Of H_2SO_3 + OH^-$
- C. 锌溶于氢氧化钠溶液: $Zn + 2OH^- + 2H_2O = [Zn(OH)_4]^{2-} + H_2 \uparrow$
- D. 亚硝酸钠与氯化铵溶液受热反应: $NO_2^- + NH_4^+$ @ N_2 \uparrow +2 H_2O
- 14. 关于油脂,下列说法不正确的是

$$C_{17}H_{33}COO-CH_{2}$$
 A. 硬脂酸甘油酯可表示为 $C_{17}H_{33}COO-CH_{2}$ $C_{17}H_{33}COO-CH_{2}$

- B. 花生油能使酸性高锰酸钾溶液褪色
- C. 植物油通过催化加氢可转变为氢化油
- D. 油脂是一种重要 工业原料,可用于制造肥皂、油漆等
- **15.** 已知短周期元素 X、Y、Z、M、Q和 R在周期表中的相对位置如下所示,其中 Y的最高化合价为+3。下列说法不正确的是

- A. 还原性: ZQ₂<ZR₄
- B X能从 ZO_2 中置换出Z
- C. Y能与Fe₂O₃反应得到Fe
- D. M 最高价氧化物的水化物能与其最低价氢化物反应
- 16. 关于化合物 $ClONO_2$ 的性质,下列推测不合理的是
- A. 具有强氧化性

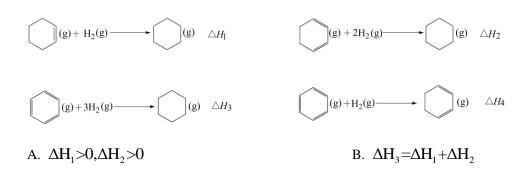
B. 与 NaOH 溶液反应可生成两种钠盐

C. 与盐酸作用能产生氯气

- D. 水解生成盐酸和硝酸
- 17. 相同温度和压强下,关于物质熵的大小比较,合理的是
- A. $1 \text{mol } CH_4(g) < 1 \text{mol } H_2(g)$

B. $1 \text{mol } H_2O(g) < 2 \text{mol } H_2O(g)$

C. $1 \text{mol } H_2O(s) > 1 \text{mol } H_2O(1)$

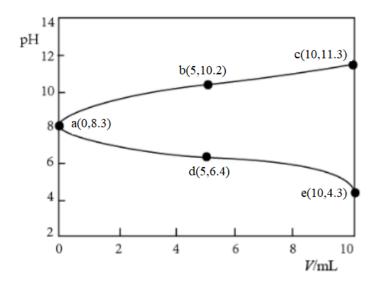

D. 1mol C(s, 金刚石) > 1mol C(s, 石墨)

- 18. 设 N_A 为阿伏加德罗常数的值,下列说法不正确的是
- A. 标准状况下, $1.12L^{18}O_2$ 中含有中子数为 N_A
- B. $31g P_4$ (分子结构:)中的共价键数目为 $1.5N_A$
- C. 100mL0.1mol·L $^{-1}$ 的 NaOH 水溶液中含有氧原子数为0.01N_A
- D. 18.9g 三肽 $C_6H_{33}N_3O_4$ (相对分子质量: 189)中的肽键数目为 $0.2N_A$
- 19. 某同学拟用 pH 计测定溶液 pH 以探究某酸 HR 是否为弱电解质。下列说法正确的是
- A. 25℃时,若测得0.01mol·L¹NaR 溶液pH=7,则 HR 是弱酸
- B. 25℃时, 若测得 0.01mol·L⁻¹HR 溶液 pH>2 且 pH < 7, 则 HR 是弱酸
- C. 25℃时,若测得 HR 溶液 pH=a,取该溶液10.0mL,加蒸馏水稀释至100.0mL,测得 pH=b,b-a<1,则 HR 是弱酸
- D. 25°C时,若测得 NaR 溶液 pH=a ,取该溶液 10.0mL ,升温至 50°C ,测得 pH=b , a>b ,则 HR 是弱酸 20. 一定温度下:在 N_2O_5 的四氯化碳溶液 (100mL) 中发生分解反应: $2N_2O_5$ f $4NO_2+O_2$ 。在不同时刻 测量放出的 O_2 体积,换算成 N_2O_5 浓度如下表:

t/s	0	600	1200	1710	2220	2820	X
	1.40	0.96	0.66	0.48	0.35	0.24	0.12

下列说法正确的是

- A. $600\sim1200$ s,生成 NO_2 的平均速率为 5.0×10^{-4} mol· $L^{-1}\cdot s^{-1}$
- B. 反应 2220s 时,放出的 O_2 体积为11.8L (标准状况)
- C. 反应达到平衡时, $v_{\text{IL}}\left(N_2O_5\right) = 2v_{\text{id}}\left(NO_2\right)$
- D. 推测上表中的 x 为 3930
- 21. 相同温度和压强下,关于反应的 ΔH ,下列判断正确的是


C. $\Delta H_1 > \Delta H_2, \Delta H_3 > \Delta H_2$

D. $\Delta H_2 = \Delta H_3 + \Delta H_4$

22. 某全固态薄膜锂离子电池截面结构如图所示,电极 A 为非晶硅薄膜,充电时 Li^+ 得电子成为 Li 嵌入该薄膜材料中,电极 B 为 Li CoO_2 薄膜,集流体起导电作用。下列说法不正确的是

- A. 充电时,集流体 A 与外接电源的负极相连
- B. 放电时,外电路通过 a mol 电子时, LiPON 薄膜电解质损失 a mol Li+
- C. 放电时,电极 B 为正极,反应可表示为 $\text{Li}_{1-x}\text{CoO}_2$ + xLi^+ + xe^- = LiCoO_2
- D. 电池总反应可表示为 $\text{Li}_x\text{Si} + \text{Li}_{1-x}\text{CoO}_2 \xrightarrow{\frac{\text{title}}{\text{5i}}} \text{Si} + \text{LiCoO}_2$
- 23. 取两份10mL 0.05mol·L $^{-1}$ 的 $NaHCO_3$ 溶液,一份滴加0.05mol·L $^{-1}$ 的盐酸,另一份滴加0.05mol·L $^{-1}$ NaOH 溶液,溶液的 pH 随加入酸(或碱)体积的变化如图。

下列说法不正确的是

A. 由 a 点可知: NaHCO $_3$ 溶液中 HCO $_3$ 的水解程度大于电离程度

B.
$$a \rightarrow b \rightarrow c$$
 过程中: $c(HCO_3^-) + 2c(CO_3^{2-}) + c(OH^-)$ 逐渐减小

C.
$$a \rightarrow d \rightarrow e$$
 过程中: $c(Na^+) < c(HCO_3^-) + c(CO_3^{2-}) + c(H_2CO_3)$

D. 令 c 点的
$$c\big(Na^{\scriptscriptstyle +}\big)+c\big(H^{\scriptscriptstyle +}\big)=x$$
 , e 点的 $c\big(Na^{\scriptscriptstyle +}\big)+c\big(H^{\scriptscriptstyle +}\big)=y$,则 $x>y$

24. 制备苯甲酸甲酯的一种反应机理如图(其中 Ph-代表苯基)。下列说法不正确的是

A. 可以用苯甲醛和甲醇为原料制备苯甲酸甲酯

B. 反应过程涉及氧化反应

- C. 化合物 3 和 4 互为同分异构体
- D. 化合物 1 直接催化反应的进行
- 25. 下列方案设计、现象和结论都正确的是

	目的	方案设计	现象和结论
A	探究乙醇消去反应的产物	取 4mL 乙醇,加入12mL 浓硫酸、少量 沸石,迅速升温至 140℃,将产生的气体 通入 2mL 溴水中	若溴水褪色,则乙醇消去反应的产 物为乙烯
В	探究乙酰水杨酸样品 中是否含有水杨酸	取少量样品,加入3mL蒸馏水和少量乙醇,振荡,再加入1-2滴FeCl ₃ 溶液	若有紫色沉淀生成,则该产品中含 有水杨酸
С	探究金属钠在氧气中 燃烧所得固体粉末的 成分	取少量固体粉末,加入2~3mL蒸馏水	若无气体生成,则固体粉末为 $\mathbf{Na_2O}$; 若有气体生成,则固体粉 \mathbf{x} $\mathbf{N}\mathbf{N}\mathbf{a_2O}$ $\mathbf{A}\mathbf{B}\mathbf{N}\mathbf{A}\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{B}\mathbf{B}\mathbf{B}\mathbf{B}\mathbf{B}\mathbf{B}\mathbf{B}\mathbf{B}B$
D	探究 Na ₂ SO ₃ 固体样 品是否变质	取少量待测样品溶于蒸馏水,加入足量稀 盐酸,再加入足量 \mathbf{BaCl}_2 溶液	若有白色沉淀产生,则样品已经变 质

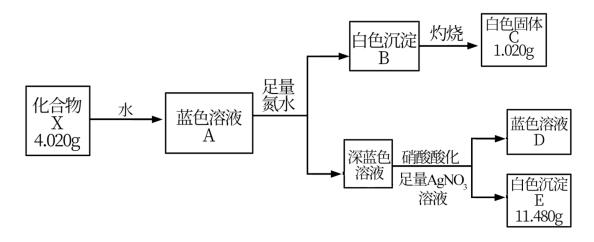
Α.	A	В. В	C. C	D. 3	D

26. (1)已知 3 种原子晶体的熔点数据如下表:

	金刚石	碳化硅	晶体硅
熔点/℃	>3550	2600	1415

金刚石熔点比晶体硅熔点高的原因是____。

(2)提纯含有少量氯化钠的甘氨酸样品:将样品溶于水,调节溶液的 pH 使甘氨酸结晶析出,可实现甘氨酸的提纯。其理由是____。

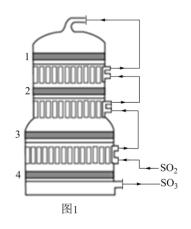

27. 将 3.00g 某有机物(仅含 C、H、O 元素,相对分子质量为 150)样品置于燃烧器中充分燃烧,依次通过吸水剂、CO₂吸收剂,燃烧产物被完全吸收。实验数据如下表:

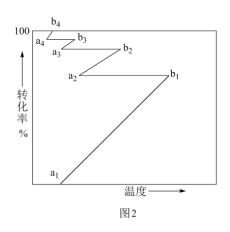
	吸水剂	CO ₂ 吸收剂
--	-----	---------------------

实验前质量/g	20.00	26.48
实验后质量/g	21.08	30.00

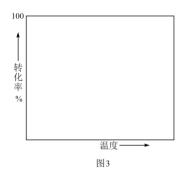
请回答:

- (1)燃烧产物中水的物质的量为 mol。
- (2)该有机物的分子式为 (写出计算过程)。
- 28. 固体化合物 X 由 3 种元素组成,某学习小组开展如下探究实验。

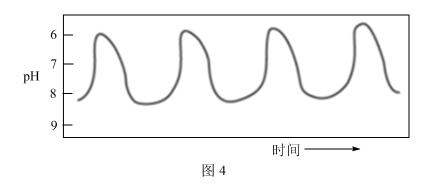

其中, 白色沉淀 B 能溶于 NaOH 溶液 请回答:


- (1)白色固体 C 的化学式是 , 蓝色溶液 D 中含有的溶质是 (用化学式表示)。
- (3)蓝色溶液 $A = N_2 H_5^+$ 作用,生成一种气体,溶液蓝色褪去,同时生成易溶于硝酸的白色沉淀。
- ①写出该反应的离子方程式____。
- ②设计实验验证该白色沉淀的组成元素。
- 29. 含硫化合物是实验室和工业上的常用化学品。请回答:
- (1)实验室可用铜与浓硫酸反应制备少量SO2:
- (2)已知 $2SO_2(g)+O_2(g)$ **二** $2SO_3(g)$ $\Delta H = -198kJ \cdot mol^{-1}$ 。850K 时,在一恒容密闭反应器中充入一定量的 SO_2 和 O_2 ,当反应达到平衡后测得 SO_2 、 O_2 和 SO_3 的浓度分别为 $6.0 \times 10^{-3} mol \cdot L^{-1}$ 、

 $8.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$ 和 $4.4 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$ 。


- ①该温度下反应的平衡常数为____。
- ②平衡时SO,的转化率为____。
- (3)工业上主要采用接触法由含硫矿石制备硫酸。
- ①下列说法正确的是____。
- A.须采用高温高压的反应条件使 SO_2 氧化为 SO_3
- B.进入接触室之前的气流无需净化处理
- C.通入过量的空气可以提高含硫矿石和SO,的转化率
- D.在吸收塔中宜采用水或稀硫酸吸收SO3以提高吸收速率
- ②接触室结构如图 1 所示,其中 1~4 表示催化剂层。图 2 所示进程中表示热交换过程的是。

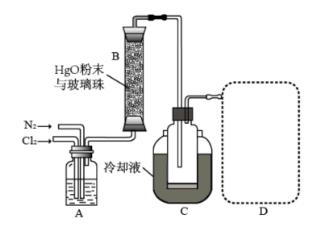
$$A a_1 \rightarrow b_1 B.b_1 \rightarrow a_2 \quad C.a_2 \rightarrow b_2 \quad D.b_2 \rightarrow a_3 E.a_3 \rightarrow b_3 \quad F.b_3 \rightarrow a_4 \quad G.a_4 \rightarrow b_4$$



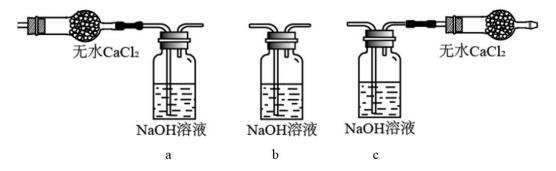
③对于放热的可逆反应,某一给定转化率下,最大反应速率对应的温度称为最适宜温度。在图 3 中画出反应 $2SO_2(g) + O_2(g) f$ $2SO_3(g)$ 的转化率与最适宜温度(曲线 I)、平衡转化率与温度(曲线 II)的关系曲线示意图(标明曲线 I 、II)_____。

(4)一定条件下,在 $Na_2S-H_2SO_4-H_2O_2$ 溶液体系中,检测得到pH-时间振荡曲线如图 4,同时观察到体

系由澄清→浑浊→澄清的周期性变化。可用一组离子方程式表示每一个周期内的反应进程,请补充其中的 2 个离子方程式。


$$I \cdot S^{2-} + H^{+} = HS^{-}$$

[].[]____;


III. $HS^- + H_2O_2 + H^+ = S \downarrow +2H_2O$;

IV.2_____°

- 30. Cl_2O 是很好的氯化剂,实验室用如图装置(夹持仪器已省略)制备高纯 Cl_2O 。已知:
- ① HgO+2Cl₂=HgCl₂+Cl₂O, 合适反应温度为18~25°C; 副反应: 2HgO+2Cl₂@2HgCl₂+O₂。
- ②常压下, Cl₂沸点-34.0℃, 熔点-101.0℃; Cl₂O沸点 2.0℃, 熔点-120.6℃。
- ③ Cl_2O+H_2O f 2HClO , Cl_2O 在 CCl_4 中 溶解度远大于其在水中的溶解度。请回答:

- (1)①装置 A 的作用是去除原料气中的少量水分,可用的试剂是
- ②将上图中装置组装完整,虚框 D 中应选用____。

- (2)有关反应柱 B, 须进行的操作是。
- A.将 HgO 粉末热处理除水分、增加表面积后填入反应柱
- B.调控进入反应柱的混合气中 Cl_2 和 N_2 的比例
- C.调控混合气从下口进入反应柱的流速
- D.将加热带缠绕于反应柱并加热
- (3)装置 C,冷却液的温度通常控制在 -80~-60 °C。反应停止后,温度保持不变,为减少产品中的 Cl_2 含量,可采用的方法是
- (4)将纯化后的 Cl_2O 产品气化,通入水中得到高纯度 Cl_2O 的浓溶液,于阴凉暗处贮存。当需要 Cl_2O 时,可将 Cl_2O 浓溶液用 CCl_4 萃取分液,经气化重新得到。

针对萃取分液,从下列选项选择合适操作(操作不能重复使用)并排序:

$c \rightarrow$	\rightarrow	$\rightarrow e \rightarrow d \rightarrow f \rightarrow$	0

- a.检查旋塞、玻璃塞处是否漏水
- b.将溶液和CCl₄转入分液漏斗
- c.涂凡士林
- d.旋开旋塞放气
- e.倒转分液漏斗,小心振摇
- f.经几次振摇并放气后,将分液漏斗置于铁架台上静置
- g.打开旋塞,向锥形瓶放出下层液体
- h.打开旋塞, 待下层液体完全流出后, 关闭旋塞, 将上层液体倒入锥形瓶
- (5)产品分析: 取一定量 $\operatorname{Cl}_2\operatorname{O}$ 浓溶液的稀释液,加入适量 CCl_4 、过量 KI 溶液及一定量的稀 $\operatorname{H}_2\operatorname{SO}_4$,充分反应。用标准 $\operatorname{Na}_2\operatorname{S}_2\operatorname{O}_3$ 溶液滴定(滴定I);再以酚酞为指示剂,用标准 NaOH 溶液滴定(滴定II)。已知产生 I_2 的反应(不考虑 Cl_2 与水反应):

$$2I^{-}+Cl_{2}=I_{2}+2Cl^{-}$$

$$4I^{-}+Cl_{2}O+2H^{+}=2I_{2}+H_{2}O+2Cl^{-}$$

$$2I^{-}+HClO+H^{+}=I_{2}+H_{2}O+Cl^{-}$$

实验数据如下表:

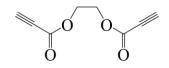
加入量 n (H ₂ SO ₄)/mol	2.505×10 ⁻³
滴定I测出量 $n(I_2)$ /mol	2.005×10 ⁻³
滴定Ⅱ测出量n(H ₂ SO ₄)/mol	1.505×10 ⁻³

- ①用标准 $Na_2S_2O_3$ 溶液滴定时,无需另加指示剂。判断滴定I到达终点的实验现象是____。
- ②高纯度 Cl_2O 浓溶液中要求 $n(Cl_2O)/n(Cl_2) \ge 99$ (Cl_2O 和 HClO 均以 Cl_2O 计)。结合数据分析所制备的

Cl₂O浓溶液是否符合要求____。

31. 某课题组研制了一种具有较高玻璃化转变温度的聚合物 P, 合成路线如下:

已知:
$$R_1$$
-Br $\longrightarrow R_1$ - N_3 $\longrightarrow R_1$ - N_3 $\longrightarrow R_1$ - N_3 $\longrightarrow R_1$ - N_3


请回答:

- (1)化合物 A 的结构简式是_____; 化合物 E 的结构简式是____。
- (2)下列说法不正确的是____。

A.化合物 B 分子中所有的碳原子共平面

- B.化合物 D 的分子式为 $C_{12}H_{12}N_6O_4$
- C.化合物 D和 F发生缩聚反应生成 P
- D.聚合物 P 属于聚酯类物质
- (3)化合物 C 与过量 NaOH 溶液反应的化学方程式是____。
- (4)在制备聚合物 P的过程中还生成了一种分子式为 $\mathbf{C}_{20}\mathbf{H}_{18}\mathbf{N}_{6}\mathbf{O}_{8}$ 的环状化合物。用键线式表示其结构
- (5)写出3种同时满足下列条件的化合物F的同分异构体的结构简式(不考虑立体异构体): _____。
- ① H-NMR 谱显示只有 2 种不同化学环境的氢原子
- ②只含有六元环

(6)以乙烯和丙炔酸为原料,设计如下化合物的合成路线(用流程图表示,无机试剂、有机溶剂任选)。

